

Engineering Notebook

Engineering Notebook

- What Is an Engineering Notebook?
- Why Keep an Engineering Notebook?
- Who Keeps an Engineering Notebook?
- Contents
- Engineering Notebook Sections
- Standard Page Layout
- Best Practices
- Historical Examples

What Is an Engineering Notebook?

An engineering notebook is a book in which an engineer will formally document, in chronological order, all of his/her work that is associated with a specific design project.

- Clear and detailed description of your design process
- Someone unfamiliar with work could take over project without additional information

Why Keep an Engineering Notebook?

An engineering notebook is recognized as a *legal* document that is used in patent activities to...

- Prove the origin of an idea that led to a solution
- Prove when events or ideas occurred
- Prove diligence in turning the idea into a solution
- Prove when an idea became a working solution ("reduced to practice")

Who Keeps an Engineering Notebook?

Engineers that work on R & D

- Legal documentation of work
- Continuity in projects

Engineering students

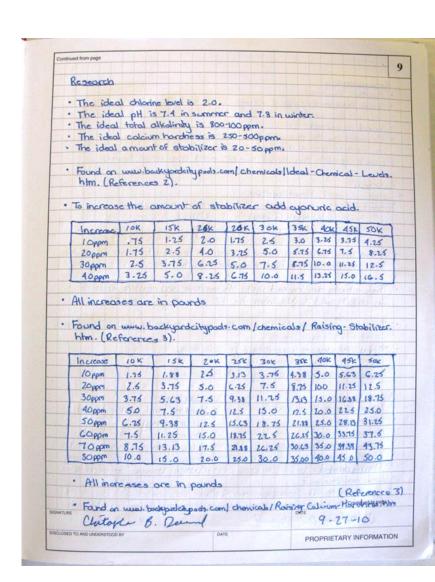
- K-12 school and college
- Develop time management skills
- Improve research, documentation, and communication skills
- Basis for professional presentation of work

Contents

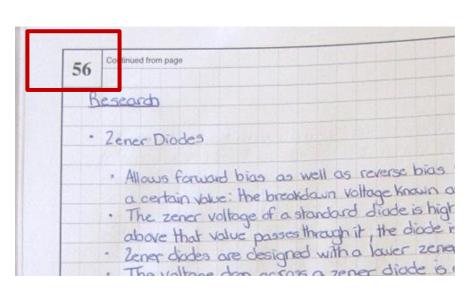
- Discovering the problem
- Research
- Sketches with labels and descriptions
- Brainstorming
- Calculations
- Your daily thoughts and ideas
- Pictures

- Expert input (names, positions, contact info, details of conversations)
- Work session and meeting summaries
- Test procedures, results, and conclusions
- Digital technical drawings
- Design modifications

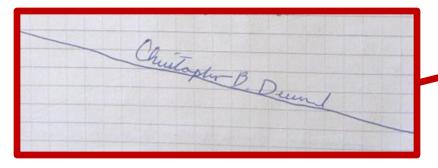
Everything you do/think related to a specific design project

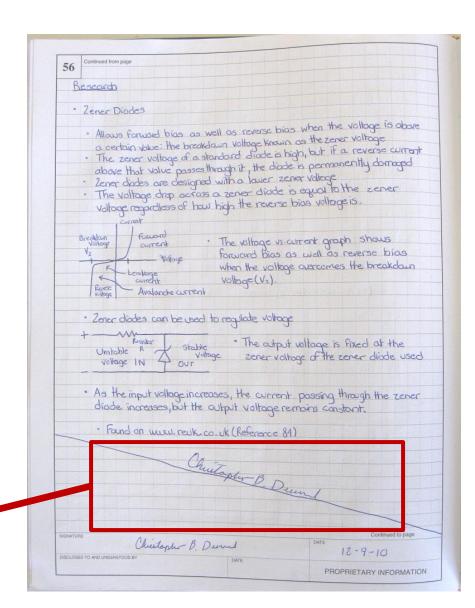

Engineering Notebook Sections

- Title Page
- Table of Contents
- General Chronological Entries
- References
- Business/Expert
 Contacts

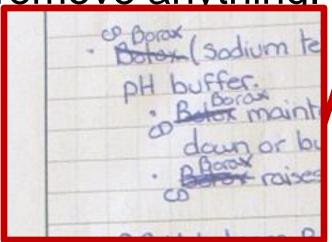

	TABLE OF CONTENTS	
AGE	Schedule Drafting, Research Adolem Statement	9-15-10
1	Updating Schedule, Research Pool Chemicals	9-16-10
	Group Meeting, Research Total Alkalinity	9-17-10
4	System Sketch, Research Chlorine	9-20-10
	Product Specifications, Chlorine Specifications	9-21-10
6	Temperature Research	9-22-10
7	Solubility Research	9-23-10
8	Borox Research	9-24-10
9	Ideal chemical levels Research	9-23-10
10	Brainstorm and Research Power Systems	9-28-10
11	Brainstorm PH Specifications, Chlorine Matrix	9-29-10
12	Sodium Dichloroisocyonurate Anhydrous Research	9-30-10
13	pH Sensor Research	10-1-10
14	Chlorine : pH Buffer Decisions, Alkalinity Testing Research	10-4-10
15	PH down Decision, Alkalinity Testing Research	10-5-10
16	Colour Haidness Testing Research	10-6-10
17	Water Hardness Up/Down Decisions	10-7-10
18	Valve Research	10-12-10
19	Valve Research	10-13-10
20	Chlorine Sensor Specifications, Value Research	10-14-10
21	Cate Valve Research	10-15-10
22	Globe Valve, Actuator Research	10-18-10
23	Product Specifications, Solenoid value Research	10-19-10
24	Schedule Update, Solenoid Valve Research	10-20-10
25	Actuator Research	10-21-10
26	PH sensor specifications	10-22-10
27	Flud power Actuator Research	10-25-K
28	Product Specifications	10-26-10
29	Turbidity Research	10-27-10
30	Mentor meeting, Black Box Diagram	10-28-10
31	Sodium Segguicarbonate Research, TA matrices	10-7910

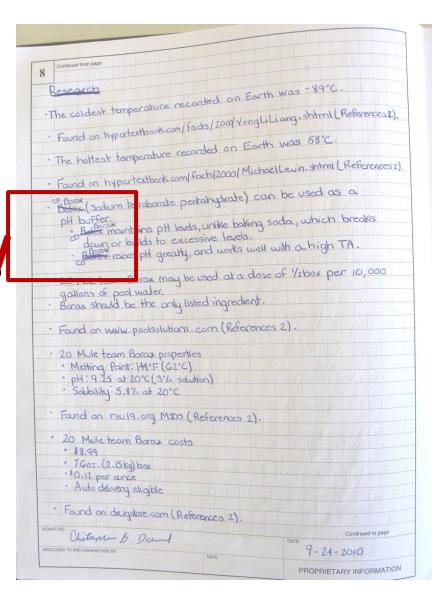
Standard Page Layout

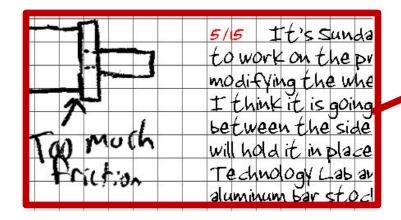

- Quad ruled paper
- All pages are
 - Numbered
 - Dated
 - Signed by the designer
 - Signed by a witness
 - Include a statement of the proprietary nature of notebook

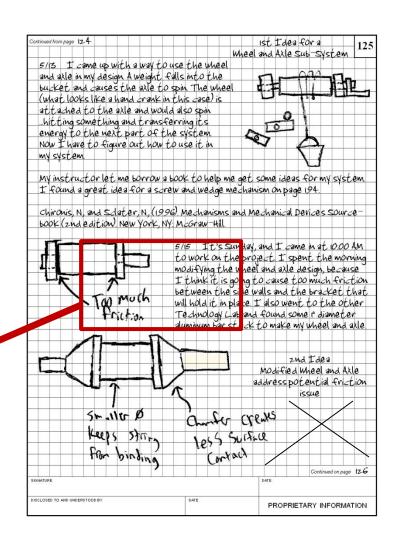


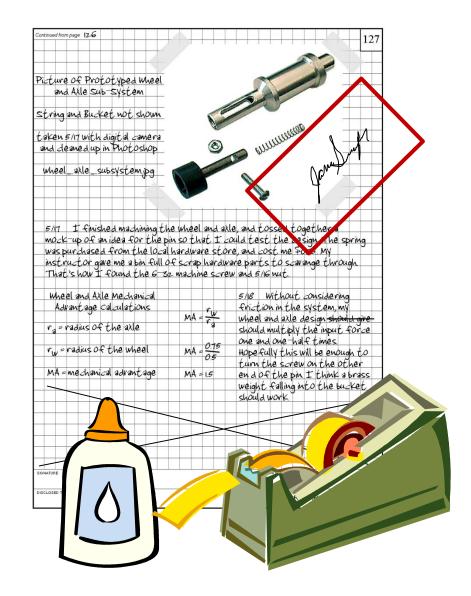
- All work is in pen.
- Markers that bleed through the paper are not used.
- Pages are sequentially numbered in ink on the top outside edge.
- Notebooks are bound.
 - Cannot add pages
 - Cannot remove pages


- Entries begin at the top of the page, working left-to-right and top-to-bottom
- Do not leave blank space. If there is extra space, draw an

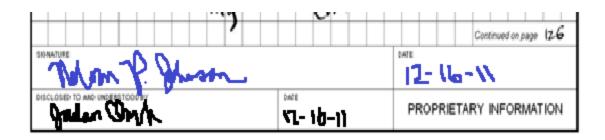



 If you make a mistake, draw a line through it, enter the correct information, and initial the change

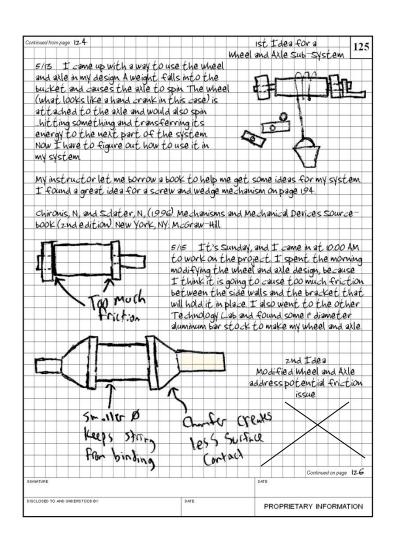

 Never erase or remove anything.



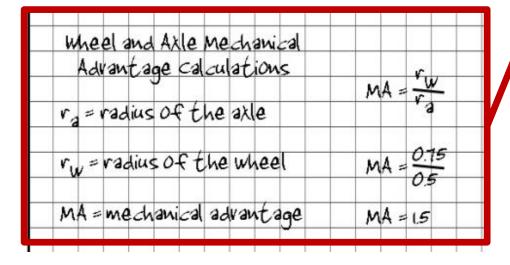
Date each entry

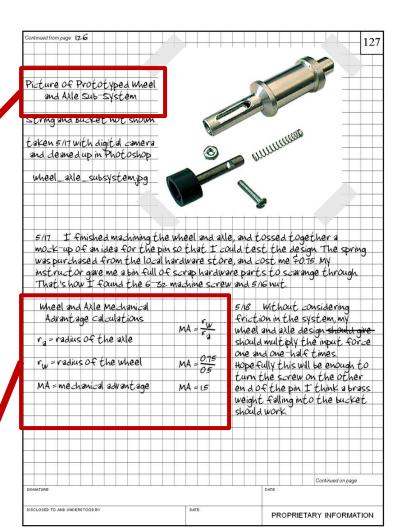


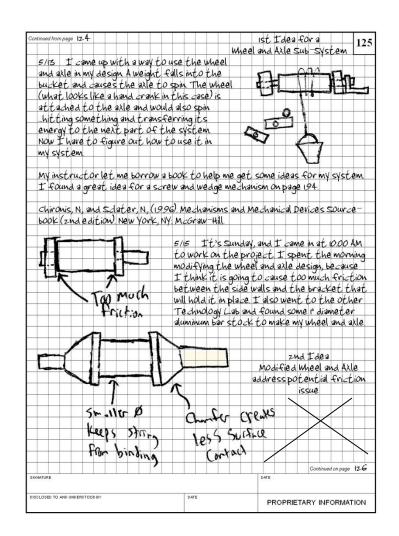
- Inserted items are permanently attached
 - Glue is preferred
 - No loose leaf items
- Sign your name so that it extends across both the notebook page and the inserted document.



- Sign and date each page before the next page is started.
- A colleague or mentor should corroborate the events and facts on each page and sign as a witness.

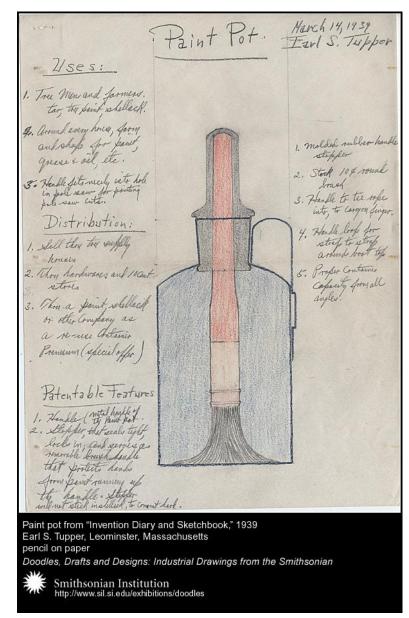

Store the notebook in a safe location.


- Sketches
 - Label all parts of the sketch
 - Describe each sketch


 Calculations and figures are clearly labeled.

Picture of Prototyped Wheel and Axle Sub-System

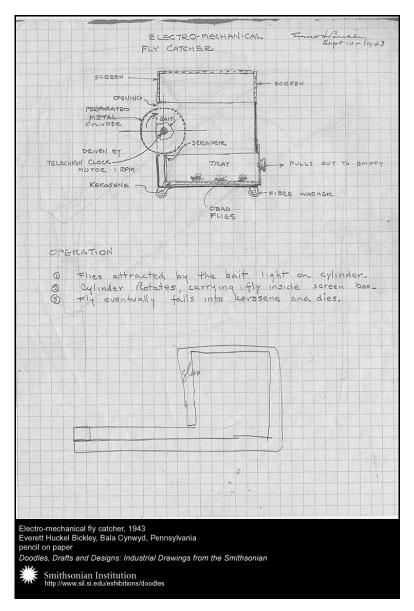
- Progress Entries
 - Reflect on tasks accomplished, successes, and failures
 - Reflect on future needs and tasks to be completed



Be NEAT,
be ACCURATE,
be LEGIBLE,
and be THOROUGH.

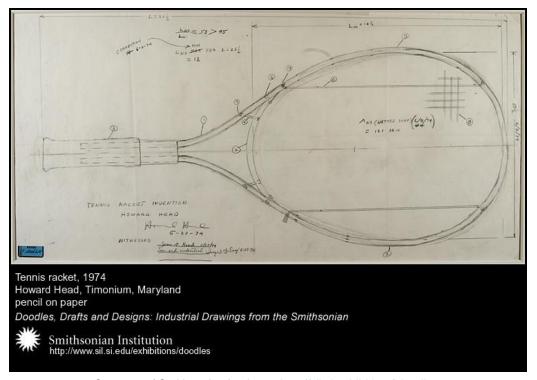
Historical Example

 Page from Earl Silas
 Tupper's (1907 1983) "Invention Diary
 and Sketchbook"


 Mr. Tupper developed a wide range of inventions, including Tupperware

Historical Example

 Everett Huckel Bickley (1888-1972) original design notes, for an electro-mechanical fly catcher, 1943


 Mr. Bickley developed dozens of inventions. His most lucrative invention was a bean-sorting machine that separated good beans from bad.

Courtesy of Smithsonian Institute: http://sil.si.exhibitions\doodles

Historical Example

- Howard Head (1914 1991) original design for an over-sized tennis racket, 1974
- The larger racket more than doubled the sweet spot of the traditional racket

Course Binder

- Differs from the Engineering Notebook
- Used to store all course material not included in the Engineering Notebook including
 - Activities
 - Research
 - Reference material
 - Handouts

Engineering Notebook

- What Is an Engineering Notebook?
- Why Keep an Engineering Notebook?
- Who Keeps an Engineering Notebook?
- Contents
- Engineering Notebook Sections
- Standard Page Layout
- Best Practices
- Historical Examples

Reference

- Tupper, E. S. (1939). *Invention diary and sketchbook*. Retrieved from Smithsonian Institute website: http://www.sil.si.edu/exhibitions/doodles
- Bickley, E. H. (1943). *Design notes*. Retrieved from Smithsonian Institute website: http://www.sil.si.edu/exhibitions/doodles
- Head, H. (1974). *Design drawing*. Retrieved from Smithsonian Institute website: http://www.sil.si.edu/exhibitions/doodles